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Introduction 

Numerical weather prediction models, which involve the solution of non-linear 
partial differential equations at point6 on an extensive three-dimensional grid, 
are ideally suited for processing on rector machines. It wa6 logicsl therefore 
that the new global forecast model to be implemented at the Heteorological Office 
should be written in vector code for the Cyber 205. 

In order to achive full efficiency and to reduce 6torage requirement8 the 
model used 32-bit arithmetic which had been found to provide high enough precision. 
Unfortunately, however, the trigonometrical and logarithmic function6 provided 
by CDC could only handle 64-bit vectors and, although written in efficient scalar 
code, did not take advantage of the epecid facilities of a rector processor. It 
wa6 therefore necessary to rewrite the function6 in rector code to handle both 
32 and 64-bit vectors. There was also no bslf-precision compiler avsilable for 
the Cyber 205 at that time and so the functiond, like the model, had to mske 
extensive use of the "specisl call" syntax. Thie made the code more difficult to 
write but it allowed much greater flexibility in that it becsme possible to accesd 
the exponent of a floating-point number independently of its coefficient. 

This paper presents a description of the technique6 and it mammarises the 
results which were achieved. One example, the logarithmic function, is treated 
here in detail to illustrate the general approach to the problem. 

Derivation of louaritbms 

The coding for the logarithm function illustrate6 both the use of the way in 
which floating-point numbers are stored and the use of linked triads to gain 
additional speed. 

To calculate fl= JpDL) we divide the range of x into two, the first of 
which is 

We first write the value of x in a way which can be related to the format 
of stored floating-point numbers. Thus, introducing two new unkuowns n and d, 
n being 6x1 integer and $4 "<I 1 we msy write any number as g2 = z*bJ. 

Now the Cyber 205 stores the floating-point number as 

. 2 ““9 wJj$+fZt = 2? z’. k 
factor ZJ 

where the 
is introduced by normslisation, 

Since for logarithms, x must always be positive, for 64-bit number8 bit 17 
will be on, 60 j = 46 and for 32-bit numbers bit 9 will be on, so j = 23. 

Then relating the two, we have n=cxp+~’ 
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As 6n exsmple, if x = 2.0 as a &-bit normalized value 
7: = 2’+I 2+L 

60 from the above formulae 

/I= - cc++4- I and 3Sl.O 

Here, we can obtain the values of n and ti very easily as we can access 
the exponent and coefficient of a number by using special cdlls. 

The next step is to convert the functions into a suitable form for vectorizatiom 
end this involves the introduction of a new variable 

time as W . 

From the original definition 

b) For the remaining values of x 9 within the range @ 
vslue of * is defined by: 

-<aa ' the 
2 

60 that Zr Ltx 
I-8 

In each ca6e, the problem 
is easily done by replacing it 
degree of precision: 

which c6n be computed at the 66me 

then become6 one of vectorizing which 
with a truncated series which gives the required 

where the constants c, are known. 

Then log, (+z = 
f ) 1-t 

Despite its complicated appearance, this reduce6 to eight vector operation6 
consisting of a multiplication, six linked triad6 and a final multiplication 
by E thus 
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Multiplication 

First triad = 

Second triad = 

Third triad = 

to give t2 

VI = c,z=+ c5 

v2 = V\2Cct 

v3 = v2 AC, etc. 

Tests, using the 1.5 compiler, and a range of,vector len ths gate the 
following results, with times being expressed in units of IO- pf seconds. 

Vector length 50 loo 200 500 moo 2ooo yJO0 
CTX logarithm6 .:” -55 1.01 2.00 3.66 7.04 21.50 
64-bit vector .47 .61 :;8 1.12 2.16 3.87 7.47 20.75 
logarithm 
32-bit vector .53 .57 .65 .82 1.34 2.20 3.99 9.66 
logarithm 

The first point to notice here is that the full increase in speed for 
32-bit vector8 is only achieved with large vector lengths. Because of the 
overheads aseociated with the initiation of vector instructions, this is not 
unexpected and is common to all of the functions to be described. What is 
unexpected is that no improvement in speed was achieved for our &-bit function 
vhen compared to the CDC function. In this respect, this function is unique 
among all those treated in this paper. However, the original aim of producing 
a 32-bit version has been successfully achieved. 

Exp0aentieJ.s 

The exponential function is derived from the standard formula 
x 

e l 2 
tr. pa $16 

chosen to make use of special calls. k, q and f 
are defined as follovs: 

If n= Lhk 16~ 

L 1 lcgLP 

then e 
It= Lrab 2 [ I 

and rncti module 16 for =7/O 

and tr= ht n 
I I 

,I and m= 16-n module 16 for SK0 
rd 

6= 14X -n 
c ) ig 

Now, since m Ojti<IL 2 
ml1fL 

is integer and , the factor is 
obtained from a look-up table of 16 elements of known values, using the "special 
call" instruction Q8VXTOV. 

Having found the integer h from the above formula, and R mllL from the 
look-up table, to obtain the value Zh. ;L*"'= ;tY+mmlrb 
exponent part of 2mr“ by using special calla. 
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The factor, $/ 16 is given by 

+ 
= P3p+J2s p,$+ po 

-ht' - /r+ p*$ - pc'l 
where f ie obtained as above and pJ?IJ b are known constants. 

Then, to obtain e * all we need is a final multiply of 2"“ by 2 
WqtL 

-4 The following results were achieved, times again being given in units of 
10 seconds. 

vector length 70 yl loo 200 500 loo0 2000 5000 
CDC exponential 035 07 .93 1.44 2.86 5.25 10.52 33.36 
64-bit vector .47 .6 .78 1.14 2.29 4.15 7.97 22.75 
exponential 
32-bit vector .47 .56 -68 .93 1.85 3.14 5.85 14.62 
exponential 

Here, for a vector length of so00 the 32-bit exponential routine is only 
40% faster than the 64-bit routine because of the use of the "special call" 
Q8VX!FOV. However the 64-bit routine has achieved a considerable speed-up over 
the CDC exponential. 

The Hyperbolic functions 

The routines to calculate the hyperbolic functions 
and y= bmhx use the following formula, 

p w&x, yz5Az 

cash x : 1 &." + e 
-zc 

- 
2 ( ) 

The calculation of a" is as described earlier. 
little extra work is required to obtain (A~ 

During the calculation of e." , 
which avoids the need to call the 

exponential routine twice, 

The hyperbolic sine is given by 

sinh x. : i (2 -e-x) 

and sinhz z for ISI< 0.5 

Here the two distinct cases are treated independently, so that we are dealing 
with shorter vector lengths, and then the results are merged together at the end 
of the routine. The polynomial expansion of sinh x can be performed in Beven 
vector instructions, by using linked triads, 

The hyperbolic tangent is given by 



for 0-a < IaLl, 18.0 

for # 7 16.4 

for xz < - M-0 

Again, the diptinct case6 are treated independently 60 that we are dealing 
with shorter rector lengths , and again we can u6e linked triads when calculating 
the polynomial expansion of CanhaL . 

The timings of the hyperbolic sine and hyperbolic tangent routines are data 
dependent, but-some sample-timings are 
units of 10s4 seconds. 

vector length 
hyperbolic 
cosine 
64-bit vector 
32-bit vector 
hyperbolic 
6i.d 
64-bit vector 
32-bit vector 
hyperbolic 
tangent 
64-bit vector 
32-bit vector 

10 50 loo 

‘-Oa 3 l . :z .88 

075 
.72 2; :*g . 

-66 .87 q-15 
.64 .73 .89 

1.68 3.33 6.01 
1.21 2.30 3.66 

I;.$ 
. 

co;; 
. 

rector lengths we do not hare a great 
for longer vector lengths we are approaching - 

Again, we see that for very short 
advantage by using 32-bit vectors, but 
twice the speed of the &-bit functions. There were no CDC function6 available to 
compare vith our results. 

given Glow. All times are expressed in 

200 500 lom 2ooo y300 

1.68 3.45 6.41 
1.27 2.44 4.44 

I;.;; 
. 

:;A; 
. 

1.96 3.88 7.27 
1.48 2.74 5.00 

‘;.f; 
. 

;;.8$ 
. 

Sines and cosines 

The trigonometrical functions, 9% sinx 
the polynomial expansion of rinx 

and s(=cobZ are calculated from 
so that we can make use of linked triads 

again. First the input argument needs to be reduced module Lfl . This is achieved 
by 

letting 4,s 2 1x1 
7r 

then put 'L=c,-cI. so that *~*'I. 

and Lz=*, modulo 4 

so Sk(X) is given by 
SEflXS sin t for krO 

sin (I - a) for k=\ 
-sin l for h= 2 

- s&l (I -;i) for k=3 
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where s;re = 
c 

znr 1 
Cm? for 

nro 
and 

Because the values C+ and Cs are too 
32-bit function results: 

'Ihe cosine function is given by 

64-bit function 

the constants 

small to affect 

Cft3 are known. 

the accuracy of the 

32-bit vector function 

cosx = 5bil where 5v,($tZ.) is calculated as above. 

If it is known that the input operand, x, is always between -Ul- and +Zr 
radians, such work can be left out of the routine; 

for as above let 

So for k= +1= 0 , 

for 4=t,= I, 

for hzr,:Z I 

for h=+,= 3, 

f, = 2 I=1 
T 

and I;. = ;nb 

Thus we have two sets of functions, one set to calculate the sine and cosine 
of any angle expressed in radians, and the other to calculate the sine and cosine 
of angles between -or and +2r radians. 

The polynomial expansion of sin(z) can be calculated in ten vector instruction8 
including eight linked triad instructions'for the 64-bit function and in eight 
vector instructions using six linked triad instructions for the 32-bit functions. 
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vector length 10 50 
m SiXlO 015 .5 
64-bit rector .49 .59 
sine (all mglem> 
52-bit vector .42 .46 
sine (all angle81 
64-bit vector .37 .44 
sine (-Hf 

to +z7r 1 
32-bit rector .?A '.37 
sine ( -Lr 
to +nr 1 

rector length 
CDC cosine .P 
2,:: yeeor .57 .60 

engles) 
32-bit vector .69 .47 
cosine (all 
angles) 
64-bit vector .72 .45 
cosine ( -rn- 
to +;z7T > 
32-bit vector .67 .37 
cosine (-AT 
to 4-afl ) 

100 
.64 
.72 

052 

953 

.41 

100 
.68 
.73 

051 

045 

-41 

200 500 ~~ ~~ 5ooo 
.9? 1.72 3.07 6.13 22.98 
-98 1.74 3.02 5.59 A4.98 

.63 .9a 1.57 2.76 6.35 

.72 1.27 2.20 4.07 10.04 

050 l 75 A.20 2.09 4.78 

200 500 1ooo mx3 5ooo 
.99 2.08 3.29 6.68 23.59 
.99 1.87 3.19 5.94 16.00 

.63 1.0 1.70 

.74 1.42 2.40 

050 .77 1.37 

2.94 6.95 

4.45 11.14 

2.31 5.51 

Thus, we can see that ve need a vector length of 5IXl to 1000 before our 
64-bit routines for all angles are faster than the CDC supplied routines, but 
that our 52-bit routine8 for restricted angles between -ZlT and *aw are 
over four time8 as fast a8 the CDC routine8 for rector length8 of 5CCC. 

Similarly for the trigonometrical function, bz tax: we have supFlied 
tvo Set8 of functions, one set to calculate the tangent of any angle eXpreSSed 
in radian8 in both 64-bit8 and the other to calculate the tangent of angles 
between -277 and tnn- radian8 in both 64-bits and 52-bits. The tangent 
function is calculated using a polynomial expansion of tan(x) to make use Of 
lialced triada. The calculation is performed by first reducing the argument 
module fl 

then 9 'r, -*a 80 thrt ogr41 

Nowlet 5%~~ modulo 8, putting k3 if O$SC3 
and k=S-4 if 4_LSSF 
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tar-&g is now given by 

tan(%)= tm Cal 

I0 
where k&b(z) = 

z c, a-' 
-0 

for k-0 

for k--l 

for k==L 

for k=3 

to the required degree of precision. 

Again, if it is lmovn that the input operand is always between -Zr and 
+ZT radians, we can vrite: 

In this case 5rTa mochalo 8 t rr 

h-., where 04 frr3 
and t* r,- j where ++ r,sz 

and the calculation continues as before. 

The polynomial expansion of tan(z) is calculated in fourteen vector 
instructions using tuelte linked triads. 

The resulting timing8 of tests are given below, eXpreSSed in units of 10 
-4 

8eCOnd8. 

vector length 
.;i .E 

100 200 500 loo0 2000 !mo 
CDC tangent .91 1.47 2.61 4.71 
6J+-bit vector .90 .82 -99 1.35 2.55 4.48 

;.fg 
. 

:"-;; 
. 

tangent C&l1 
angles) 
32-bit vector .96 .78 .90 1.14 1.92 3.21 5.59 13.29 
tangent (all 
angles) 
64-bit vector .67 .76 -93 1.25 2.36 4.14 7.74 20.64 
tangent (- mr 
to +-UT ) 
32-bit vector -67 .70 -80 .99 1.76 2.94 5.15 11.98 
tangent ( -UT 
to -al-r 1 
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These rtmrlts 6hou that we need a vector length of only about 200 before 
our 64-bit tangent function for all angles is faster than the CDC routine, and 
that our 32-bit tangent function for restricted angles between -2p and 

+X3- radian8 is well over twice a8 fast as the CDC routine. 

The Arctanqent function 

The arctaagent function J= L&M. cx) is again calculated from a polynomial 
expansion 80 that we can use linked triads. The calculation is performed a8 
fOuOW8: 

For 1x1 .n +I 

and for /xl< a+/. 

let LUSI 
1x1 

let La= Ix/ 

Change the variable to z, defined by 
a= 0-a 

& +d 
where, a is Chosen so that z = 1.0 when 34z+I 

Under this condition, a = (I -a)44 -2.n * , and is therefore a 
Constant. 

Then atan is given by 

atan(r>=atan(z>+atan(a) 

Here, atan is a constant and need only be calculated once, and we may replace 
atan by the t cated series: 

dim (*I = 3 
amt 1 

blz 
m=0 

For Irl >,n+r, 

and for xeo , a& (z) = - ah Ix) 

Atan can be calculated in ten vector instructions, eight of which are 
linked triad instructions. The results are in the range -F to +r (not 
inclusive). z 5 

-4 The following results were achieved, times again being given in units of 
IO seconds. 

vector length 
cnc arctangent .g 1:: l?E 4% 3% IE; 4z 
64-bit vector -52 .66 .92 1.91 3.07 5.77 15.23 
arc tangent 
32-bit vector -43 .49 -55 .69 1.10 1.79 3.34 7.27 
arctangent 

These results are 8pectacular, in that the 32-bit arctangent function is 
over six times as fast as the CDC routine and even the 64-bit version has given 
a threefold increase in speed. 
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Derivation of arcsine and arccosine fbnctionn 

The final trigometric routines to be considered calculate the arcsine and 
arccosine of x. The calculations are performed as follows, 

for O$Xj '/z , let a=* so that asin = asin 

and for *cxg , let t= (1 of)" and asin = r- 2&U Ia) 
z 

for -I SX<O ( asin = asin end the same substitutions are used. 

Now the new variable, z, must be between zero and 0.7 so we may write 

to the required degree of 

The arccosine function is derived from the arcsine using the substitution 

aco6SIx) I 
T-~~ix~ 

The polynomial expansion of asin is calculated in thirteen vector 
instructions, eleven of vhich ace linked triads. The range of the results for 
arccosine is -zr to +_n inclusive, and for arccosine is 0 to7 inclusive. 

L t 

The following results were achieved , with times expressed in uuits of 10 
-4 

seconds. 

vector length 
-lo ii 'O" 

200 5w lcxx 2000 5ooo 
CDC aecsine 

:;2 :61 
.87 1.27 2.6 

64-bit vector .75 1.04 2.02 
arcsine 
32-bit vector -54 .57 -58 .73 1.37 2.25 3.91 9.11 
arccosine 

vector length 10 50 loo 200 px 1000 2000 5coo 
CDC arccosine .26 .68 .89 1.27 2.41 4.35 
64-bit vector .51 .61 ,76 1.05 1.95 3.44 

;.;t 
. 

$3; 
. 

arccosine 
32-bit vector .48 .5L, .61 .76 1.25 2.07 3.66 8.59 
arccosine 

Here our 32-bit functions are over three times as fast as the CDC routines, for 
vector lengths of 5000. 

Conclusion 

The trigonometrical and logarithmic functions , as provided by CDC up to and 
including version 2.0 of the compiler are, in general, not very efficient. At 
the Meteorological Office, we found it necessary to hand-code these functions in 
vector syntax to take full advantage of the facilities of the Cyber 205. For the 
32-bit versions, which have a high enough precision for most of our purposes, 
speed increases of up to six times were obtained and even for our 64-bit versions, 
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increases of'up to three times are possible. Hovever, CDC have undertaken to 
proride fully rectorized versions of the trigonometrical andlogarithmic functions 
in both 64-bits and 32-bits by release 2.1 of the compiler. 

The functions described were written in the "special call" syntax because 
of compiler limitations and the difficulties associated with this were partly 
offset by the special features vhich vere then available. Users with the 2.0 
compiler could find that the extra facilities provided by the "special calls" 
do not overcome the difficulties involved with this syntax and that coding 
explicitly in the RXTHAN vector syntax achieves sufficient vectorization for 
their ova purposes. 
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